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� Develop Parallel codes in Electromagnetics

� Perform research in Computational Science by collaborating with 

SciDAC Centers for Enabling Technologies & Institutes

� Focus on Large-scale simulations using computers at NERSC 

and NCCS (with 1 INCITE and 3 allocation awards)

Massively Parallel Computing in Electromagnetics

� solve the most challenging problems in accelerator design,    

optimization and analysis via High Performance Computing

for the DOE-SC complex working on

HEP - High Gradient, Laser Acceleration, Muon Collider,

ILC, Project X, LARP

NP - CEBAF12 GeV Upgrade BES – LCLS
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Higher-order Finite-Element Method
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� Tetrahedral conformal mesh with 

quadratic surface 

� Higher-order Finite Elements (p = 1-6)

� Parallel processing (large memory & 
speedup)

dense

LL end cell with 

input coupler only

67000 quad elements

(<1 min on 16 CPU,6 GB)
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Parallel Electromagnetics Codes

Suite of scalable Finite-Element Electromagnetics codes to 
model Large, Complex structures with high accuracy:

Frequency Domain: Omega3P – eigensolver (mode damping, non-linear) 

S3P           – S-parameter 

Time Domain: T3P        – transients & wakefields

Pic3P    – self-consistent particle-in-cell (PIC) 

Particle Tracking: Track3P    – dark current and multipacting

Gun3P – space-charge beam optics 

Multi-Physics: TEM3P   – EM-thermal-mechanical

Visualization: V3D           – meshes, fields and particles

Developed under Grand Challenge and SciDAC1 (2001-2006) in black; 

Under development for ComPASS (2007-2011) in red
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Development of Omega3P

Goal: High Fidelity simulation -> CAD drawing -> hardware fabrication  
- from single 2D cavity to a cryomodule of eight 3D ILC cavities

An increase of 105 in problem size with 10-5 accuracy over a decade    
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Activities for Code Development

� Omega3P
– Implement domain specific scalable solvers
– Develop shape optimization algorithms

� T3P
– Implement Napoly wakefield integration method
– Improve moving h/p adaptive refined moving window for beam 

excitation

� Track3P
– Develop surface physics models and parallel particle tracking 

algorithms for dark current simulation

� TEM3P
– Develop new capabilities for thermal and mechanical solvers for 

realistic design and analysis of accelerator cavities

� Pic3P
– Implement realistic 3D emission models and moving window for 

rf gun simulation
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Pic2P – Parallel Finite Element 2D EM PIC Code
from 1st principles, accurately includes effects of
space charge, retardation, and wakefields

Drive + Scattered fields Scattered fields only

LCLS RF Gun has been designed to be 
cylindrically symmetric in beam region

2.856 GHz, 120 MV/m, ππππ-mode

Cylindrical 
Bunch (2D)

Q=1nC

Pic2P - Finite Element 2D EM PIC Code
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PIC Codes at Space Charge Limit

• MAFIA and Pic2P results agree

MAFIA 2D

PARMELA

Cylindrical 
Bunch (2D)

MAFIA 2D
Pic2P

• PARMELA results* differ at higher space-charge regime
* courtesy Cecile Limborg

PARMELA:
No retardation

No wakefields
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Evolution of electron bunch and 
scattered self-fields

Pic3P - LCLS RF Gun Emittance

3D emittance calculations with Pic3P

include space-charge, wakefields and 

retardation effects from first principles. 

Parallel processing and conformal 

higher-order finite elements allow 

unprecedented modeling accuracy.

Evolution of transverse phase space, 
starting from SLAC measured data

In collaboration with LCLS
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Advancing Multi-physics Simulation Tool 

Electromagnetics

Thermal Mechanical

TEM3P for design and optimization

Vacuum
Courtesy E. Jongewaard

CAD model 

Metal

Engineering prototype

Courtesy D. Dowell

LCLS 

RF Gun

In collaboration with LCLS
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Tem3P – Cooling of CEBAF HOM waveguide 

Cold-warm transition
for Nb waveguide 

extension at HOM coupler

SRF cavity

Nb waveguide 
extension

� Simulation goal

– Determine design to satisfy 
cooling requirements 
including RF and thermal 
effects

� Tem3P code development

– Implement thermal shell 
elements for thin layers

– Develop nonlinear solver for 
temperature-dependent 
material properties

– Implement boundary 
condition for He convection 
cooling

In collaboration with TJNAF 
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Activities for Accelerator Simulation

High Energy Physics

� ILC/Project X – Wakefield and HOM effects in cryomodule with
cavity imperfection; low-emittance rf gun

�LHC/LARP – Design and optimization of crab cavity; Wakefield
effects in collimator

�High-Gradient R&D – Optimization of choke cavities for HOM 
damping; CLIC PETS and HDX accelerator structure

�Muon Collider – Multipacting & dark current studies for muon
cooling cavity

�Laser Acceleration – Coupler design for optical fiber

Nuclear Physics

�CEBAF 12-GeV Upgrade – EM, thermal and mechanical analysis 
of SRF cavity coupler

Basic Energy Sciences

�LCLS RF Gun – 3D self-consistent PIC simulation
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Physics Goal: Calculate wakefield effects in the 3-cryomodule RF

unit (26 cavities) with realistic 3D dimensions and misalignments

cryomoduleRF Unit of 3 cryomodules

cavity

Modeling an Entire RF Unit of ILC Linac

The LARGEST problem for time-domain analysis

- 80 million-element mesh, ~500 million DOFs, 4096 CPUs (Jaguar), 
4 seconds per time-step. 

For frequency domain

- 3 million-element mesh, ~20 million DOFs, 1024 CPUs (Seaborg), 
300 GB memory, 1 hour per mode.
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T3P - 1st ever Beam Transit in Cryomodule

ILC cryomodule of 8 superconducting RF cavities

Expanded views of input and HOM couplers

Fields in beam frame moving at speed of light
T3P
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Trapped Modes in ILC Cryomodule

• Modes above cutoff frequency are 
coupled throughout 8 cavities

• Modes are generally x/y-tilted & 
twisted due to 3D end-group geometry

• Both tilted and twisted modes cause 
x-y coupling in the beam

�Trapped modes in 3rd dipole band 

• TM-like mode at 2.948 GHz, higher than 2.943 GHz TM cutoff

• R/Q = 0.392 Ω, Q = 6320

• Mode power = 0.5 mW (averaged)

(not a concern for heating in this case)

�Trapped mode in beampipe between 2 cavities
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Supporting the LHC

LHC Collimator (Upgrade)
Impedance and beam heating 
effects are important for the 
design.
(Omega3P and T3P )  

LHC Crab Cavity (Upgrade)
The crab cavities rotate the beams 
at the IP to produce head-on 
collisions, improving luminosity. 
Design for strong damping of 
SOM/LOM/HOM is needed.
(Omega3P )

Baseline Design of crab cavity for LHC upgrade
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Advancing High Gradient R&D

CLIC – Hybrid Damped Structure 
(HDX) 

CLIC - Power 

Extraction & 
Transfer Structure 

(PETS)

Slotted-Disk Structure Choke-Mode Structure

HOM damping & Multipacting studies are needed for High Gradient Structures 

In collaboration with CERN  
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Track3P - Multipacting in SRF Cavities

ILC Linac TTF-III cavity coupler

• Simulated MP bands in coaxial 
waveguide agreed with measurements

V3D

SNS SRF cavity HOM coupler

• RF heating observed at HOM coupler
• 3D simulations showed MP barriers 

close to measurements

MP in TTF coupler

MP in SNS HOM coupler

Track3P

Measurements
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Advancing Muon Cooling Cavity Design   

SEY > 1 for copper

Impact energy of resonant particles 
vs. field level

SEY > 1 for copper

w/ 2T B field at 10 degree

w/ 2T transverse B field

2T

2T

2 types of resonant trajectories:

• Between upper and lower 
irises

• Between upper and lower 
cavity walls

Slight MP activities observed 
above 6 MV/m

2 types of resonant trajectories: 

• One-point impacts at upper 
wall

• Two-point impacts at beampipe

MP activities observed above MP activities observed above 
1.6 MV/m1.6 MV/m

Particle tracking to study multipacting or dark current damage

In collaboration with BNL and LBNL 
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Advancing Laser Acceleration

Model of a fiber slab Defect Mode

Omega3P used to 
determine defect 
mode properties

Coupler  

S3P used to 
determine coupling of 
power to defect mode

Develop a conceptual design for power coupling into optical fiber
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Measurements
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BBU in CEBAF 12 GeV Upgrade Cryomodule

• Tests show 3 abnormally high Q 
modes in # 5 of the high-gradient 
cavities

• Beam-breakup (BBU) threshold 
current is significantly below 
design value

• Issues could not be resolved 
experimentally

• SLAC scientists have made great 
progress in finding a solution by 
treating it as an inverse 
problem

Low-loss cavities High-gradient cavities

3 high-Q 

modes

Courtesy: H. Wang, F. Marhauser, J. Sekutowicz, 

C. Reece, R. Rimmer (TJNAF)
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CEBAF BBU - Solving the Inverse Problem

CEBAF 12-GeV upgrade –

� Beam breakup (BBU) observed at beam
currents well below design threshold. 

• Used measured RF parameters such as f, Qext, and 
field profile as inputs 

� Solutions to the inverse problem identified the 
main cause of the BBU instability: Cavity is 8 mm 
shorter – predicted and confirmed later from 
measurements

� The fields of the 3 abnormally high Q modes are 
shifted away from the coupler 

� Showed that experimental diagnosis, advanced 
computing and applied math worked together to 
solve a real world problem as intended by SciDAC
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� SLAC FEM EM simulation tools have had significant 
impacts on a broad range of DOE accelerator projects in 
HEP, NP and BES

� Parallel EM codes have been tackling the most 
computationally challenging problems in accelerator 
design, optimization and analysis

� R&D in computational science via SciDAC (and the 
coming Exascale) is vital to the success of accelerators

� Large payback from collaboration of accelerator 
modeling and computational science such as JLab BBU 
analysis

See following talk on AM/CS efforts on supporting FEM EM

Summary


